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Abstract

In real-time monitoring situations, more information is
not necessarily better. When faced with complex emer-
gency situations, operators can experience information
overload and a compromising of their ability to react
quickly and correctly. We describe an approach to fo-
cusing operator attention in real-time systems monitor-
ing based on a set of empirical and model-based mea-
sures for determining the relative importance of sensor
data.

Introduction: Sensor Selection

Mission Operations personnel within NASA are begin-
ning to face the manifestations of a technology race.
Our ability to devise safe, reliable monitoring strate-
gies is not keeping pace with our ability to build space
platforms of increasingly complex behavior with large
numbers of sensors. To date, spacecraft such as Voy-
ager have had sensor complements numbering only in
the hundreds. For these space platforms, it has proven
both feasible and appropriate to adopt a comprehensive
monitoring strategy where mission operators interpret
all of the sensor data all of the time.

However, NASA is moving into an era where sensors
on space platforms such as Space Station Freedom will
be numbered in the thousands. With space platforms of
this complexity, the comprehensive monitoring strategy
will be no longer tenable. This trend is not unique to
NASA.

It is our thesis that for complex systems with large
sensor complements a selective monitoring strategy
must be substituted for the comprehensive strategy.
The subject of our work is an approach to determining
from moment to moment which subset of the available
sensor data for a system is most informative about the
state of the system and about interactions occurring
within the system. We term this process sensor se-
lection and we have implemented a prototype selective
monitoring system called SELMON [Doyle and Fayyad
91, Chien et al 92, Doyle et al 92].

The SELMON system has its origins in a sensor
planning system called GRIPE [Doyle et al 86] which
planned information gathering activities to verify the
execution of robot task plans. The goal of the current

SELMON project is to provide assistance to operators
by focusing their attention during real-time monitoring.
Our sensor selection approach also could be embedded

‘as part of an autonomous monitoring and control sys-

temn.

Approach: Sensor Ordering

Our approach to focusing operator attention in real-
time monitoring involves defining a set of sensor scoring
measures. Each of these measures embodies a different
viewpoint on why, at a particular moment, one sensor
may be more worthy of operator attention than others.
The measures are based in concepts from model-based
reasoning and information theory. Some of the mea-
sures utilize sensor value predictions generated by sim-
ulating a causal model of the system being monitored.

During each timestep all sensors are scored according
to these measures. The scores are used as a basis for an
ordering on the sensors. See Figure 1. These scoring
measures are divided into two categories. The first set
- empirical methods - rely upon current and historical
data to determine importance. These measures include
surprise, alarm, anticipate alarm, and value change.
The second set uses a causal model of the system to
reason about expected current and future performance
of the system to determine sensor importance. These
methods include deviation, sensitivity, and cascading
alarms.

After describing each of these measures, we describe
how these measures are combined into an overall im-
portance score for each sensor.

Empirical Sensor Scoring

In this section, we describe the empirical measures that
are used in determining the overall importance score
assigned to each sensor. This part of the score is based
on four measures: surprise, alarm, anticipale elarm,
and value change. These measures use knowledge about
each individual sensor, independently of any knowledge
about the interconnectedness of the sensors.

Surprise In order to obtain an ordering on the set
of sensors, we need to quantify the following notions:
How reliable is a sensor? How stable is it? How often
does it go into an alarm state?
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Figure 1: SELMON Architecture.

From an information theoretic point of view, a change
in the value of a sensor gives us a certain amount of in-
formation (usually measured in bits). Assume we have
two sensors, S4 and Sp. Further assume that sensor
S4’s value has been wildly changing over the last 100
readings, while sensor Sg’s value has been constant.
If we are told that according to the latest update, the
values of both sensors have increased by 25%, which
do we consider a more informative event? Clearly the
fact that Sp’s value changed is more informative since
it is more unusual. Prior to the latest reading, if we
were asked to predict the values of S, and Sp, then
based on previous data, we would naturally guess that
S4's value is likely to have changed while Sg’s value is
likely to have remained constant. Then the fact that
Sp changed value tells us something that we did not
know or expect.

For each sensor, a cumulative histogram of its values
is maintained for each system operating mode. This is
done by dividing its range into a fixed number of bins.
The boundaries between bins are determined through
specific knowledge of the sensor and of the “interesting”
subranges in its range. This histogram is then used to
determine two measures of the interestingness of the
most recent value returned by a sensor.

Denote the range of sensor S by Range(S). If
Sisa contlnuously valued sensor, we can discretize

its range into a set of collectively exhaustive ranges
{Ry(S), Ra(S), ..., Rk(S)}, where

K
Range(S) = U Ri(S)

With each range R;(S) we associate a frequency mea-
sure f;(S) that gives the proportion of time that S’s
value has been in this range. Thus f;(S) is an estimate
of the probability of the value of S falling in range R;(S)
and

K(S)

Y £(8)=1

i=1

To quantify the degree to which sensor S is stable in
its reading, we apply the notion of information entropy.
The entropy of the values of a sensor S, denoted by

V Entropy(S), is defined by

K
- fi(S) - log £i(S)

=1

V Entropy(S) =

where V Entropy(S) is maximum when all ranges of
values of S are equally likely (i.e., when S changes value
often). It is minimum when the values of S have all
been in one range R;(S), thus f;(S) = 1 (for some
i, 1 < i < K(S)). It can easily be shown that 0 <
V Entropy(S) < log K. We are now ready to define the
average value informativeness of sensor S, denoted by
VInform(S), to be

V Entropy(S)
log K(S)

where VInform(S) takes on values between 0 and 1.
A value of 1 indicates that S normally rarely changes
its value, while a value of 0 indicates that S’s value is
equally likely to be in any of its ranges.

On the other hand, the quantity

VUnusual(S) =1 — f;(S)

gives the unusualness of sensor S’s value being in the i-
th bin. VUnusual(S) is computed each time S reports
a value, and the i used is the index of the bin containing
the reported value. This measure can assign the same
degree of unusualness in fundamentally different situ-
ations. For instance, it does not dxstxngulsh between
a value having a probability of + occurnng when all
other values have an equal probablhty of L % each, and
a value with proba.blhty when only one other value
has probability (1 - %) w1th the remaining values hav-
ing probability 0. In the first case, the value is just as
likely as any other. In the second case, the interesting
event is that the most likely value did not occur. To
make this distinction we combine the unusualness and
value entropy measures to obtain the surprise score:

VInform(S) - VUnusual(S).

This measure takes on the maximum value of 1 when
one bin in the histogram has probability one and the
sensor registers a value in another bin. It has a mini-
mum value of zero when all bins in the histogram are
equally likely.

VInform(S)=1-

Surprise(S) =
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Accounting for Alarm Thresholds Alarm thresh-
olds for sensors, indexed by operating mode, typically
are established through an offline analysis of the design
of NASA space systems. SELMON makes use of alarm
threshold information in the following way: A sensor
whose value traverses the safety threshold is said to go
into a state of alarm. The predicate In.Alarm(S) cap-
tures this notion:

_ [ 1 if S is outside its safety range
In.Alarm(S) = { 0 if S is within its safety range

We compute the value of an alarm score for S as
follows:

ALScore(S) = In_Alarm(S) - (1 + Tray(S)].

where Trav(S) is the proportion of the alarm range
traversed..

We consider alarms as interesting events whose im-
portance decreases with time. Thus a sensor that per-
sists in alarm state for prolonged periods of time should
gradually fade from our attention. To achieve this we
add an exponential decay factor. Let t4(S) be the time
at which sensor S last entered into alarm. At any time
t, the alarm score is computed as follows:

Alarm_Score(S) = %ALSCOTC(S)C-p(t-t‘(S))

where B > 0 is the time decay constant. 8 is chosen
small so the decay will not be too fast; typically 8 <
0.1/second.

Given the recent values of S, one may conduct a sim-
ple form of trend analysis to decide whether or not sen-
sor S is anticipated to be in alarm soon. The measure
Predict_Alarm(S) is a curve-fitting prediction of when
the sensor will enter alarm. This measure has a min-
imum of 1 and a maximum of infinity if the curve fit
indicates that the sensor will never enter alarm. If the
sensor is currently in alarm, Predict-Alarm(S) measures
when the sensor is predicted to leave alarm. This mea-
sure is used to compute a score Anticipate Alarm as
follows:

. . 1/Predict_Alarm
Anticipate_Alarm(S) = { 1/— 1/ Predict_Alarm

The first case applies when S is within its safety
range. The second case applies when S is outside its
safety range.

Thus, if S is currently not
in alarm, Anticipate_Alarm will be at its maximum
of 1 when Predict_Alarm predicts the sensor will enter
an alarm range immediately. If S is currently not in
alarm, Anticipate_Alarm will be at its minimum of 0
when Predict_Alarm predicts the sensor will never en-
ter alarm. If S is currently in alarm , Anticipate_Alarm
will be at its maximum of 1 when Predict_Alarm pre-
dicts the sensor will never leave the alarm range. If §
is currently in alarm, Anticipate_Alarm will be at its
minimum of 0 when Predict_Alarm predicts the sensor
will immediately leave alarm.

Quantifying Value Change A change in the value
of a sensor i8 considered to be an event of interest. The
surprise measure described above measures the degree
of interestingness of a sensor taking on a certain value.
Another aspect of sensor behavior to measure is the
most recent change in value of the sensor that brought it
to its current reading. However, absolute change mag-
nitude is not interesting in and of itself. What is in-
teresting is the probability of the most recent change
taking place. Hence we need a scheme for normalizing
the absolute change in value of a sensor.

The scheme we use assigns a score to each change in
the value of a sensor that is an estimate of the propor-
tion of all previous value changes for that sensor that
had value changes strictly less than the change under
consideration. Suppose we get a change in value of the
sensor equal to A. Furthermore, suppose that 60% of
the previous value changes for this sensor in the current
operating mode have been less than A. In this case, we
assign a score of 0.6 to the change A. Changes with
magnitude greater than A will get higher scores.

This scheme requires that we keep track of a sorted
sequence of all value changes of each sensor. This is nei-
ther feasible nor necessary. An approximation of this
value can be obtained by keeping a constant number
of values, say W, in a sorted sequence. Let the total
number of changes in the values of a sensor so far be
C(S). Rather than storing all C(S) values, we store
only W < C(S) values. With the arrival of a new
change in value for sensor S, we increment the count
of changes C(S) and then we decide whether to replace
one of the W values we are storing or simply ignore the
current value change. The decision criterion is to gen-
erate a random number in [0, 1] according to a uniform
distribution, and replace one of the W values if and
only if that random number is less than cu; . It can
be proven that this algorithm is equivalent to one that
stores all C(S) values, randomly samples W of them,
and returns as score the proportion of the W elements
that have value less than the change under considera-
tion.

We call this score the percentile value change score.
It is used to assign a normalized score in the range [0, 1]
for each change of value that occurs in each sensor. By
definition, this score is maximum when the change is
the maximum change of value seen so far for a particular
sensor. It is minimum when no change occurs in the
value of a sensor.

Model-Based Measures

SELMON also uses a model of the monitored system
to determine sensor importance. This model is used to
compute three scores: deviation, sensitivity, and cas-
cading alarms. This section describes how each of these
scores is computed.

Deviation The deviation measure uses a model of the
monitored system to make predictions of expected cur-
rent sensor readings. The concept of the deviation score
is that sensor readings deviating significantly from the
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predicted values are anomalous and should be reported
to the operator.

The deviation score is computed in the following
manner. First, the raw deviation is computed as the
difference between the predicted and observed sensor
scores. This raw deviation is entered into a normaliza-
tion process identical to that used for the value change
score, and the resultant score in the range [0,1] is the
overall deviation score.

Causal Analysis The SELMON system also uses the
causal model of the monitored system to reason about
future effects of current quantity changes. These fu-
ture effects are considered in two causal-based mea-
sures. First, sensitivity measures the effect of predicted
changes in quantities on the overall state of the system.
This is done by projecting each predicted change in a
quantity individually forward as a perturbation of the
system, and measuring the overall change in the system.
Those currently occurring changes which have a greater
effect upon the future state of the system are likely to
be more important and thus receive high scores to be
displayed to the operators. The second causal reasoning
measure is cascading alarms, which measures the poten-
tial for observed changes to result in rapidly developing
alarm sequences. The cascading alarms measure uses
the same perturbation analysis used in the sensitivity
analysis and measures the number of alarms triggered
and how quickly alarms occur. Those predicted changes
which are expected to trigger large numbers of alarms
are scored highly and thus will be selected to be dis-
played to operators.

Sensitivity Analysis Sensitivity analysis measures
the sensitivity of other quantities in the monitored sys-
tem to changes in each quantity in the model. This
is performed as follows. Beginning with a simulation
of the system in its current state and time Teurrents
simulate forward one timestep (i.e. until the next time
sensors are expected to be polled). For each quantity
Q, choose AQ,,.q as the current 50th percentile value
change recorded for the given sensor.

Then, for each quantity @, run a simulation begin-
ning again with the current system state, perturbing
Q by AQpred, propagating this change to other quan-
tities in All_Quantities (the set of all quantities in the
model) as dictated by the model. For each such changed
quantity Q' in All_Quantities, for each time timel that
the quantity changes during the simulation, collect a
sensitivity score proportional to the amount of change
in @' normalized to the size of the nominal range of
the sensor but also modified by a decreasing function
of timel. This calculation captures the characteristic
that delayed and less direct effects are more likely to
be controllable and less likely to occur. Thus, a change
which affected a quantity Q' but occurred slowly is con-
sidered less important. This simulation proceeds for a
predetermined amount of simulated time. Then, for
each changed quantity Q’, take the maximum of the
collected change_scores for that quantity. The sensi-

tivity score for Q is the sum of these maximums for all
the Q’s. Thus, for each quantity Q, a simulated change
produces a set of change_scores for each other quantity
in the model. The sensitivity score for Q is the sum of
the respective maximums of each of these sets. If there
are no changes to a quantity, this set is empty and the
quantity receives a zero score.

A background sensitivity score is subtracted from the
sensitivity score for Q, computed by measuring the sen-
sitivity score via simulation with no perturbation of the
system.

Cascading Alarms Analysis Cascading alarms
analysis measures the potential for change in a single
quantity to cause a large number of alarm states to oc-
cur, thus causing information overload and confusion
for operators. In the cascading alarms score, the same
simulation used in the sensitivity score computation is
used to also determine the number of alarms triggered
by the observed change. In the cascading alarms score,
for each quantity Q, the number of alarms triggered by
a perturbation of Q by AQp,.4 is computed.

The alarm count is then normalised for the total
number of possible alarms and the weight of each alarm
state triggered is also decreased as a function of the time
delay from the initial change event to the alarm. This
has the effect of focussing this measure on quickly de-
veloping cascading alarm sequences which are the most
difficult to interpret and diagnose. Finally, the cas-
cading alarms score is normalized by subtracting the
background cascading alarms score. This background
score is simply the cascading alarms score for no per-
turbation.

Computing a Total Sensor Score

We use the surprise score to modulate the percentile
value change associated with a sensor. This accounts
for the unusualness of a sensor value as well as the
change in the sensor value that brought it to its current
reading. The percentile value change score is also used
to modulate the scores obtained by the causal analysis
of the system: the sensitivity score and the cascading
alarms score. These are modulated by the percentile
value change because they are computed based on an
analysis of the effect of a perturbation in the value of
the sensor on the overall system. The remainder of the
score combinations are simple sums. See Figure 2.

Application Domain

Our application domain is the hardware testbed of the
water side of the Environmental Control and Life Sup-
port System (ECLSS) for Space Station Freedom. The
water side of ECLSS consists of three principal sys-
tems: Multifiltration (MF), Vapor Compression and
Distillation (VCD), and the Volatile Removal Assem-
bly (VRA). Using a combination of analysis of system
description documents, consultation with testbed engi-
neers, and actual hardware testbed data, we have con-
structed models of all three of these subsystems. Each
subsystem model contains 30-50 quantities and 15-30
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Figure 2: SELMON Sensor Scoring Algorithm.

mechanisms. Work in elaborating fault models is on-
going. This model has been validated by comparison
against actual data from the subsystem testbed under-
going evaluation at the Marshall Space Flight Center
(MSFC) in Huntsville, Alabama. We are also in the
process of extending our model to cover the ECLSS air
side subsystems.

Performance Evaluation

The output of the SELMON algorithms is dynamically
computed each time the sensors are polled. SELMON
produces a total ordering by importance on the set
of sensors, and a window size which determines how
many sensor data are presented to the operator. In
order to assess whether SELMON is usefully focusing
operator attention, we are comparing sensor subsets se-
lected by SELMON to critical sensor subsets specified
by domain experts as useful in understanding episodes
of anomalous behavior in actual historical data from
ECLSS testbed operations.

In one experiment, we asked whether or not SEL-
MON was suppressing sensor data deemed critical by a
domain expert. For this experiment, we separated the
performance of the window sizing algorithm from the
sensor scoring algorithm by choosing a constant win-
dow size. The specific question posed was how often
did SELMON place a “critical” sensor in the top half
of the sensor ordering. For a sensor set of cardinality
13, we defined the top half to be the first seven slots in
the total sensor ordering. Thus the performance of a
random sensor selection algorithm would be expected to
be about 46.2%. Table I shows the results of this exper-
iment. The first column identifies one of the episodes
specified by the domain expert. The second column
shows the number of timesteps in the episode in which
the given sensor was deemed critical. The third column

shows the overall SELMON *“hit” rate for that episode:
the number of times SELMON placed the given sensor
in the top half of the sensor ordering.

EPISODE | # of timesteps | Hit Rate (0) |

kc01.1 710 81.4
kf01.1 3 100
kf01.2 7 100
kf01.3 7 100
kf01.4 2 100
kf01.5 2 100
kf01.6 2 100
kf01.7 2 100
kf01.8 2 100
kf01.9 7 100
kf01.10 4 50.0
kp01.1 40 475
kp02.1 40 47.5
kp03.1 40 62.5
kp01.2 71 98.6
kp02.2 71 100
kp03.2 7 100
kt01.1 27 100
kt02.1 9 88.9
kt02.2 332 100
kt04.1 25 100
All 1512 87.1

Table I: SELMON performance at selecting critical
sensor data.

These results suggest that SELMON performs at
much better than random at replicating the attention
focussing of one domain expert identifying episodes
of anomalous behavior for the ECLSS testbed. SEL-
MON’s performance is not yet at the level which could
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support an operational capability for real-time moni-
toring assistance. A more detailed analysis is ongoing
to determine why SELMON performed poorly in some
episodes and to examine the performance for individual
sensor importance measures.

SELMON is intended to assist operators in efficient
anomaly detection - the first step towards diagnosis.
Another planned experiment will investigate how sensor
selection supports diagnostic reasoning:

In addition to the ECLSS subsystem models which
describe nominal behavior, a number of ECLSS fault
models are being developed. After implementing a di-
agnostic reasoning algorithm, we will determine how
this algorithm performs at correctly diagnosing faults
from behavior traces resulting from simulation of these
fault models. We will then test the performance of the
diagnostic reasoning algorithm when it is given only
SELMON-selected sensor data. Finally, we will test
the performance of this algorithm when it is given the
same number of sensor data randomly selected. Some
degradation of performance is expected in the diagnos-
tic reasoning algorithm using SELMON-selected data.
A measure of success will be a significantly greater loss
of performance with randomly selected data. A final
caveat is that this experiment may only indirectly shed
light on the ability of SELMON to support human trou-
bleshooting activity.

Discussion

NASA mission operators are trained to interpret raw
telemetry to create a mental model of the state of a
spacecraft or spacecraft subsystem. SELMON is in-
tended to focus operator attention on the most impor-
tant sensor data. If SELMON does nothing more, it
may-be construed to be simply and only providing op-
erators with less raw data to interpret, and thus may
be considered to be a step in the wrong direction.

Accordingly, we recognize that an important compo-
nent of the SELMON approach is the ability to provide
explanations or interpretations of why a particular sen-
sor has been placed in the monitoring window and is
worthy of operator attention. Future work in the SEL-
MON project will be oriented towards complementing
focus of attention and anomaly detection capabilities
with model-based interpretation capabilities.

In related work, we are also investigating the prob-
lem of sensor placement during design, using both mon-
itorability [Chien et al 91a] and diagnosability [Chien
et al 91b] criteria.

Summary

We are developing techniques to support real-time mon-
itoring through sensor selection, the moment to mo-
ment focusing of attention on a subset of the available
sensor data. Sensor selection is based on a set of im-
portance criteria which draw on concepts from model-
based reasoning and information theory. Although the
SELMON project is currently targeted towards focus
of human operator attention, the techniques may also

support focus of attention in an autonomous monitor-
ing and control system. .
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